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Synopsis
An attempt is made to formulate a statistical theory of particle penetration phenomena in real, 
i.e. nonrandom stopping media. The treatment concentrates on individual collision events that are 
well localized in space, but correlated via the trajectory of the penetrating particle. Since Poisson 
statistics does not govern a sequence of collision events in an ordered structure, the mean-free- 
path concept fails, and penetration theory has to be developed from the bottom. As it turns out, the 
cross section keeps to be the leading concept when defined as an atomic parameter without recourse 
to the mean free path. However, a sequence of competing correlation terms occurs which do not 
influence the average behavior of the beam but enter fluctuations and higher-order averages. These 
correlation terms depend on the structure of the stopping medium. The leading one contains the 
pair correlation function of the structure, and can be expressed in terms of the structure factor as 
measured in x-ray or neutron diffraction.

As a main result, one obtains an extension of Bothe’s formula—which governs the statistics 
of particle penetration through thin layers—to ordered matter. The more specific discussion refers 
to energy loss and multiple scattering of heavy charged particles, as well as inner-shell processes, 
in ideal molecular gases, real gases, and amorphous solids or liquids. Previous results derived for 
the energy loss and multiple scattering of ions in molecular gases are contained in the present 
description. In that work it has already been documented that correlation effects may become 
pronounced when the cross sections are large. The present work shows that correlations may be 
positive or negative, dependent on whether the attractive or repulsive interaction between target 
particles dominates in the range of impact parameters governing the collision events in question.
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1. Introduction

In studies of the interaction of particles with matter, it is convenient to distinguish 
between collision and penetration phenomena. Collisions are distinct events on 
a microscopic level, such as the excitation of an electron by an alpha particle 
or the dissociation of a molecule by a photon. Penetration phenomena may be 
observed on a larger scale, under conditions where the chance for one particle 
to undergo several collisions is appreciable. Typical examples of penetration 
phenomena are the stopping and multiple scattering of charged particles in 
dense matter, and various ionization phenomena.

From an experimental point of view, the transition between collision and 
penetration phenomena is gradual. Collision phenomena are investigated by 
means of thin targets to ensure single events. The requirements to be imposed 
on a target in order to be called “thin” depend on the desired accuracy of ex­
perimental results. Even in a dilute gas target, there is a non-zero probability 
for more than one collision in an individual passage.

From a theoretical point of view, one may consider collision events to be 
governed by the appropriate equations of motion, such as Schrodinger’s equa­
tion, while statistical considerations are essential in the treatment of penetration 
phenomena.

The statistical theory of particle penetration was developed early in this 
century1-4. This theory is generally based on the assumption of statistical in­
dependence of different collision events. Therefore, quantitative predictions 
originate in Poisson’s distribution, Boltzmann’s equation, or equivalent first 
principles.

According to standard penetration theory5, the probability P for a projec­
tile to initiate a certain event while penetrating a small path length Ax is

P = A Axa, ( 1)

where JV is the number of target particles (atoms, molecules, electrons, etc) per 
volume, and a the cross section for the event in question. A necessary condition 
for sucessive events to be statistically independent is the possibility to make Ax 
small enough so that P « 1. A lower limit of Ax is set by the duration of a col­
lision. For an order-of-magnitude estimate, take an interaction radius a, and 
set Ax 2«, er ~7iö2, and JV ~ (3/4ti) (2/</)3, where d is a mean interparticle 
spacing in the target. Then, successive collisions can be statistically independent 
only if

P ~ 12(«/^)3<s= 1 ; (2)
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For processes on an atomic scale, this condition is easily fulfilled when the target 
is a gas. In solid or other dense media, eq. (2) is obeyed for processes on a nuclear 
scale, while for atomic processes, it is more or less violated except for very rare 
events.

Once eq. (2) is not fulfilled, the concept of a free flight path becomes mean­
ingless, and hence Poisson statistics does not readily apply. Conversely, the very 
fact of an appreciable probability for a projectile to interact with every target 
particle along its path suggests an influence of target structure on the statistics 
of collision processes. Another important consequence is the possibility of collec­
tive processes that has been pointed out long ago6 '.

The present paper deals with the statistics of penetration phenomena in 
situations where the basic collision events are well-localized but not statisti­
cally independent. There is a wide range of penetration phenomena — in partic­
ular in solid targets—where correlations between individual collision events 
are nonncgligible but not dominating. In the opposite case of strong correlation, 
a redefinition of the basic collision event may be possible such as to make cor­
relations weak. An attempt is made in this work to provide a description that 
is flexible enough to allow for both spatial and other types of correlations.

The relation between such a treatment and conventional penetration theory 
is similar in several ways to that between the kinetic theory of real and ideal 
gases, and some of the statistical methods applied here are indeed common in 
gas theory.

Despite the desired flexibility, the guiding principles have been chosen to 
aim at a treatment of heavy-charged-particle penetration phenomena, where 
the importance of correlation effects has been documented recently8-12.

At present, the treatment has been limited to the case of negligible feed­
back of collisions on the motion of the projectile particle. This implies small 
energy loss and deflection and, more important, neglect of possible changes of 
projectile state during penetration. A more general treatment incorporating 
the latter class of phenomena is in preparation13.

In sects. 2 & 3, general expressions are derived for the frequency spectrum 
of individual collision events and the cumulative effect of collisions in the pre­
sence of correlations. The main result of this treatment is a generalization of 
Bothe’s formula2' to correlated systems. In sections 4 and 5, spatial correlations 
are considered by means of an impact-parameter treatment of individual colli­
sions. In section 6, comments will be made on how to select suitable statistical 
variables, and in section 7, various methods of evaluating cumulative effects 
are extended to correlated systems. Finally, section 8 contains more explicit 
results for energy loss and multiple scattering. In particular, this section provides 
the link between the general considerations made in the present work and the 
more special situations treated earlier9’10,12.
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2. Statics of a Single Type of Event

Take a target with a number of independent degrees of freedom, or modes of 
excitation, and consider a specific event, called A in the following. As an ex­
ample, take a solid target, and denote by A the process of A-shell excitation in any 
of the constituent atoms of the solid which may be assumed monoatomic for 
the moment.

Let a projectile interact with the target, but disregard all action of the target 
on the projectile. Within the above example, take an energetic ion moving on 
a straight line through the solid with negligible energy loss, and disregard elec­
tron capture and loss as well as excitation and deexcitation of the ion.

In the following, it will be convenient to speak of an “ion” and “target 
atoms” as well as the “passage” of an ion, even though the projectile need not 
be an ion and the target particles might be electrons, nucleons, molecules, 
plasmons, phonons, etc. It will, however, be assumed that the target has mac­
roscopic dimensions, i.e., that the number of target atoms is large.

Even though we deal with independent modes of excitation in the target, 
there may exist a more or less pronounced correlation of events A in any individual 
passage. Within the above example, only those atoms have nonzero probability 
for A-shell excitation that are located within some microscopically small dis­
tance from the trajectory of the ion. Thus, excitation processes in different target 
atoms are correlated via the trajectory of the ion.

Suppose there are z different ways of initiating event A, i.e. z different tar­
get atoms. Let P, (i = 1, ... z) be the probability for initiating A in the z-th atom 
in a particular passage. Then, the probability Fn for n events A in that passage 
is given by

s n (1-P;) ; n^Q,\,...z; (3)

each term in the sum representing the probability for event A to occur in a given 
selection of n atoms, and not to occur in the remaining (z-n) atoms. The sum 
includes all („) different selections of n atoms.

The Fn are readily seen to be the coefficients of a power series expansion of 
the generating function (or partition function)

/« = fl(l-^+^.) = É V H)
i = l n= 0

where t is a dimensionless variable with no physical significance at this point. 
From (4) one obtains

/(1) = 1= t F„,
n =0

(5a)
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i.e., the individual probabilities add up to 1. Moreover, taking derivatives one 
obtains average values,

Z(I) = ; (5b)
n i

f’W=l,i(n-l')Fn=Y,P,Pr. (5c)
n j

etc. This results in the Taylor series

/« = 1 + (J -1 ) S +1 (i -1 )z Z ■ (6)
i j

Consider now the average Fn over many different passages, i.e. the frequency 
spectrum for event A when a macroscopic beam of projectiles interacts with 
the target.

Let us make the important assumption at this stage that the beam is homo­
geneous, i.e. equal a priori probability P per beam particle to undergo event 
A for all target atoms,

p. = p fOri= 1,...£ (7)

Eq. (7) requires that no target atoms are “shadowed” systematically by 
others. The relation is readily fulfilled in case of an ion beam spread uniformly 
over a macroscopic target area, since it has already been assumed that individual 
trajectories are not governed by target structure, and that energy loss and scat­
tering are inappreciable. An example of a situation where (7) is not generally 
fulfilled is that of an internal source of projectiles, e.g. from radioactive decay12, 
and, especially, channeling phenomena in crystals14.

In case of a homogeneous beam, (5b) and (7) yield11

" = YnFn = = ZP ; (8)
n i

Similarly, from (5c),

T?-«2 = ZP{\ -T) + S Qàj (9)
I#: j

where

(9a)
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Obviously, Qdj is a measure of the correlation between the events initiated in 
two given atoms i and j.

Let us now make use of the assumption that z is a large number, i.e., that 
we deal with a macroscopic target. With target thickness x and target (or beam) 
area S, we have

Z — NSx, (10)

so z can be made as large as desired by a mere increase of 5'. So long as the pro­
jectiles interact over a microscopic distance, this does not affect the essential 
physical properties of the system. (We keep in mind that bounds exist on the 
target thickness x because of the requirement of negligible beam attenuation).

By definition of P, we must have

(H)

where cr is the cross section for event A. Obviously, P is a very small quantity, 
unlike the statistical variables Pt which may take on values between 0 and 1.

From .(8), (10), and (11), one obtains the standard prescription for deter­
mining cross sections5,

n = J\/x(7 ; (12)

Note, however, that n need not be small in order that (12) be valid, nor has it 
been assumed that collision events be statistically independent.

Consider now the fluctuation, eq. (9), in case of a macroscopic target. We 
have zP^—P) = zP, since P<<1. The correlation coefficients differ from 
zero only if atoms i and j lie within some welldefined microscopic volume. 
Hence, if the target area S is made very large, only one summation in the double 
sum extends over all atoms while the other is limited. In other words, the double 
sum increases as ce z rather than cc £2, so we can write

~PP-rP =^(P+AP2) (13)
with

A/>2=1 S ft, , (13a)

and A/2 being finite for £ —> oo .
Consider now the beam average over the partition function (6),
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After insertion of (12) and (13) one finds

or, rearranging according to powers of 

(15)

This results in Poisson's distribution1 5

— Nxa 

(16)

where

for

for the frequency spectrum of an individual event A governed by a cross sec­
tion (7.

It is tempting to generalize eq. (15) in accordance with ( 14"), he. to write

where the dots indicate terms containing correlations.
It is evident (and well-known15) that in the absence of correlations, J\s) 

becomes exponential,

an

» = i4(5-imi(t-i)2[(^)24Mf2]+...

The proof is central. It is carried out, therefore, in some detail.
Write the beam average of eq. (6) in the form

/(■’) = È
n =0

1 n = 0
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Introducing correlation coefficients

with

bn = Z Q, ri>\
if£ ..at i„

-^•••(^ -p)

(19)

(20)

we find the following identities,

an — bn — È + ..\z-n^-\)Pman^m
m = 1

S È for 1 < ncz;
m = 1

From this follows

û«= È (m^n-m(zP)m
m - 0

(21)

with £0=l. Insertion of (21) into (18), and rearrangement of summations 
yields

(22)

Errors in (22) arise from those terms where n becomes comparable with z- (Note 
that z °c S while Z'P is independent of 5).

Consider first the case where all Pt are uncorrelated. Then, bn = 0 for n > 1, 
and (22) becomes identical with eq. (15).

Consider next the case of pair correlations only, which may be realized by 
a diatomic molecular gas. Then, higher-order correlations are nonzero only 
to the extent that they can be decomposed into pair correlations. By means 
of simple combinatorics, (19) yields

b2m = (2m — 1) (2m — 3) ...3-1 (b2)m

-1 = 0
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for m — 1,2... . Therefore,

With this, and (13a) and (19), (22) becomes identical with (17).
In case where both second and third order correlations are present, while 

higher correlations decompose, one finds

K = 3(^2)2 ;
b5 = 10b2b3 ; 
/>6=15(V + 20(/>3)2;
A, = 105(Vi3 ; 
etc.

so

2)^(5- l)n = +
0 n •

Similarly, in case of higher correlations, one may write

(23)

where

(24)

and the index (z) indicates that only irreducible zz-th order correlations are to 
be included in the sum.

In the above treatment, z was essentially considered infinite. This requires 
the functional behavior of/($) to be determined by a number of terms in 
the Taylor series (18) with zz0 z- If is restricted to the range |j| < 1, and the 
APn bounded according to |APn| < P, one must require that the relation 

be obeyed for all zz > zz0 with some value zz0 << z- By means of Stirling’s formula 
and eq. (12), this becomes equivalent with
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(25)

where = 2.718. By comparison with eqs. (1) and (2) one finds that (25) is 
a rather weak requirement.

In most applications of the present treatment, only pair correlations are 
important, i.e. all APn for n > 3 can be ignored. In that case, j\s) according 
to (23) reduces to a generating function for Hermite polynomials16. By term- 
by-term comparison with (14) one finds

r=rt(f-^2) [4P-ÄPJ2)]"-2- (26)

This is a generalization of Poisson’s formula (16) to systems with pair correlation. 
In subsequent applications, the partition function f(s) itself will actually 

become more useful than the frequency spectrum Fn .

3. Cumulative Effect of a Multitude of Events

Consider now two mutually exclusive events A1 and d2 such that one ion can 
initiate Ax or T2 in a given target atom, or none but not both. Let Ptl and Pi2 be 
the respective probabilities (z = 1,...^), and let be the joint frequency 
spectrum for nY events A1 and n2 events A2 in an individual passage. This quan­
tity follows readily from the partition function

/(^2)= S F,..,«, (27)
i = 1 0<n1 + n2<i

where and s2 are independent dimensionless variables. Eq. (27) is a straight 
generalization of eq. (4).

Taylor expansion of (27) similar to (6) yields

/U,^) = 1+S^-1)S7’,.+IS(S<I-1)(^-1) (28)
a i aß j 
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or, by analogy with (17) or (23),

/(b ^2) = exp4£ta-l)^a+iS (ja-l)(j<J-l)âP2-a/J + ...} (29)
a aß

where
(29a)

(P^-PMP^-Pe} (29b)
< i y: j

etc., and a,ß — 1,2.
Consider now some cumulative effect U,

U=nxux+nzuz = ^naua ,
a

where ua is the contribution of an individual event of type Aa to LA Then, the 
probability density G(L7) is given by

G(U)= S F.... !>(.U-T,naua)
»i>»« a

or, after Fourier transformation,

(30)

Comparison with (27) shows that the integrand can be expressed by means of 
the partition function f{sx, 52). Hence,

or, after insertion of (28),

with

G(Z7)=-U dteau~^
2 71J -00

(31)

A = S(l-e--.)Pa-iS(l-<'“-)(l-«-"--)4/)2^a+-... 
a aß

(32)
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The notation has been chosen so that eq. (32) remains true for any number 
of events Aa, a = 1,2,3,... Moreover, if a is a continuous variable, the quan­
tities Pa,AP2 a0 go over into corresponding probability densities and correlation 
functions. Finally, if ua (and U) is a vectorial rather than a scalar quantity, 
eqs. (31) and (32) have to be read correspondingly, with t being a vector vari­
able, too.

In the absence of correlations, (31) reduces to Bothe’s formula2

(33)

which is the conventional starting point for the theory of small-angle multiple 
scattering2,12 and energy-loss spectra4, when specified suitably. Standard deri­
vations4,17 of eq. (33) are based on Boltzmann’s equation.

For completeness one may wish to generalize eq. (32) to the case of a poly­
atomic target. Let there be qz) atoms of species I (= 1,2,...), and allow each 
species to undergo a set of events J(/)ct with a = 1,2,... Then, eq. (32) amplifies 
to

4 = 2^,
i

E S (1 -(1 (34)
i, j d, 0

where P {1}a is the probability per beam particle to initiate an event T(/)a in 
a given target atom of type I, i.e.

p
lot

__ aa la (35)

and <j(/)a the respective cross section. c(/) is the concentration of species I,

(36)

and z/(1)a the contribution of one event T(/)a to the cumulative effect U. Finally,

AP2(IJ )a0 —
Ztf je J

(37)

where the prime indicates omission of the term i # j (for I = J).
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4. Spatial Correlation. Impact Parameter Treatment

In this section, correlations will be evaluated for the case where the target 
particles (preferably atoms or molecules) can be taken as well localized in space 
for a certain amount of time, and where the essential parameter determining 
the collision events is the initial location of a target particle relative to the 
trajectory of a beam particle.

Let p be the vectorial impact parameter with respect to some specified 
point 0 within the target particle, e.g. the nucleus of an atom or the center-of- 
mass of a molecule. If the probability to initiate an event A in a given target 
particle depends on p only, we have

a = \p(p)d2p (38)

according to (11). If P(p} is essentially different from zero only for p covering 
some microscopic area << .S’, the integration in (38) can in practice be extended 
over the entire p-plane.

Consider now the correlation coefficient Q^, eq. (9a) for two target particles 
i and j, located in ri=(xi gf) and = (jq jq), respectively. Here, the x-axis is 
parallel to the trajectory, and Qt and are two-dimensional vectors specifying 
lateral positions. Let the trajectory have the lateral coordinate q.

Introducing Fourier transforms

we can write

<y(k) = \d2pP(jp)e,kp-
s

p(p)

(38a)

(38b)

P-P= P^~e.)-P = -^ (39)Ô k

where the prime indicates ommission of the term k = 0. Then, averaging over 
the beam yields

(40)
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Similarly, the higher correlation coefficients, eq. (20), read

m = 1

Mt.)

where ök,k' is Kronecker’s symbol. 
From (13a) and (40) we obtain the leading correlation term in eq. (17),

|o’(å:)|2 elk(e> e<) > ;■J * (41)

Here, the sum over individual target particles has been put into brackets that 
symbolize their distribution. Indeed, in an experiment, projectiles hit the tar­
get at different times. Therefore, a time average is taken over the set of instan­
taneous positions {r, ,... rz}.

As it stands, eq. (41) implies that all motion of target atoms during the time 
interval of an individual passage can be ignored. In practice, target motion is 
required only to be inappreciable for the amount of time needed by the pro­
jectile to penetrate the correlation volume, i.e., the volume within which atomic 
positions are strongly correlated. In the absence of long-range order, this does 
not mean a severe restriction even for only moderately fast projectiles. (Other­
wise time-dependent correlations have to be introduced18). Systems with long- 
range order such as crystals need special care for a different reason (cf. below).

The quantity in brackets in eq. (41) is quite closely related to the structure 
factor that is measured in conventional diffraction experiments. Indeed, take a 
situation where the target thickness x is much larger than the range of the cor­
relation of the structure in question, i.e., disregard surface effects. By means of 
the pair distribution19 g2(r) —7V-g2(r)^3r is the probability to find a target 
particle in (r,rf3r) if there is one in r = 0 — we have

d^rg2(r)e iK-r _ (42)

where K = (0,Æ). With the common definition 20 of the structure factor

S(Æ)-1 = N d3r{g^r)-\)e^- (43)
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(41) reads

= A-x^jîpt|<7(fc)|2(S(fc)
1). (44)

where S(k) stands for £((0,fc)).
For third-order correlations, eqs. (24) and (41) yield

ZAP2 = JVx •(r(fc) a (£>*(* + £') • (S(k,k') - 1)

where

(45)

S (Æ, K') - 1 = JV2 p3rr d3r'e‘K' 'r'- [&(r ;r') - 1 ], (45a)

and JV2£3(r\r'}(Pr(Pr' is probability to find atoms in (r,</3r) and (r',d3r'} if 
there is one in r — 0. Higher-order correlations form correspondingly.

These results are readily generalized to the multitude of events discussed in 
the foregoing section. By comparison with (9a) and (13a) we find instead of (44)

(46)

where

(46a)

and J^c(J]g2{IJ}(r)d3r is the probability to find an atom of type J in (r,</3r) if 
there is an atom of type /in r = 0.

Formal evaluation of eq. (42) for an ideal crystal yields

S t‘K <'•-,> = (47)
i*j Q.

where Q runs over the reciprocal lattice21 of the structure in question. Con­
sequently, one would find from (41)

(47') 
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where Q= (0,ç). Thus, long-range order causes an x2-dependence of Z'AP2 on 
target thickness which is essentially different from what was found in eq. (45). 
At the same time, the validity of the various assumptions entering (47z) is by 
no means proven. Indeed, ignoring governed motion in crystals in the discus­
sion of the effects of long-range order is hardly justified. Therefore, the follow­
ing discussion will concern systems with short-range order only.

For very thin targets, surface effects become important in the structural 
correlations, so eq. (44) is no longer obvious. As an extreme example, take a 
planar layer characterized by a correlation g2(t?) —1- Then, (41) yields

(48)

where n = z/S. The only noticeable difference between (48) and (44) lies in the 
quantitative behavior of the two pair distribution functions.

It may be worthwhile to stress that the description put forward in this section 
is based on the assumption that individual events are correlated only through 
the trajectory of the projectile. In particular, the characterization of the ele­
mentary event by a probability T(p), as expressed by eqs. (38) and (40), rather 
than a quantal transition amplitude ignores quantal interference between dif­
ferent events. Thus, the treatment excludes coherent scattering processes (in 
the language of diffraction theory18). Also, it is implied that the basic event is 
defined in a manner so that individual interaction regions do not overlap sub­
stantially.

5. Examples: Molecular Gas, Hard-Sphere Gas, 
and Amorphous Solid

A very simple case of a medium with short-range order is an ideal gas consisting 
of randomly oriented diatomic molecules. When viewed as an assembly of atoms, 
such aufcystem has pair correlations only, and the correlation function can be 
approximated by 

&(»•)-1
d(r-rf)
4ti,W/2 (49)

in the simplest case of a homonuclear molecule with individual atoms assumed 
spherically symmetric, and vibrational motion around the equilibrium distance 
d ignored. (A is the number of atoms per volume). Then, (43) and (44) yield
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and

S(Æ)-1 sin Kd
Kd

zAP2 = Kx~—
2 2nd

(49a)

(50)

Expressions of this type have been investigated previously910. A very im­
portant limiting case is that of short-range interaction, where the cross section 
(38) is made up predominantly from contributions within the range p <C d. 
Setting

^(p) ~ a ■

in (38a), one obtains from (50)

(51)

(52)

It is easily shown9 10 that (52) is the leading term in an asymptotic expansion 
of (50) in terms of of 2nd2. Thus, the short-range approximation applies for 
a << 2nd2 ; this means that correlation effects are supposed not to be dominating.

It may be worthwhile to stress that correlations in the ideal molecular gas 
originate in the (deliberately taken) view of the system as an assembly of atoms. 
If, instead, the description is based on projectile-molecule collisions as the basic 
event, Poisson statistics applies. Indeed, previous derivations910 of the present 
results were found along that line which is, in fact, more direct in case of the 
molecular gas, but much less general. Thus, with regard to the present descrip­
tion, the molecular gas constitutes mainly a useful test case.

As another illustrative example, consider a real gas, e.g. a noble gas with a 
hard-sphere-like repulsive interaction, so that

for r <
r > b (53)

where b is twice the hard-sphere radius. Then, (43) and (44) yield

and

S (Æ) — 1 =-----yy- (sin kb —kb cos kb )K (53a)
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(54)

In the short-range limit, (54) reads

Z&P2 ~ ~ ■ 2Nb , (55)

i.e., A A becomes negative. Unlike (52), (55) is a density-dependent correction 
to Z‘P, as is obvious from the underlying physical model.

For a more general system, eq. (44) reads in the short-range limit

MA

Let the medium be isotropic, i.e., g2(r) = ^2(r)- Then, (43) reads

£(/C)-l = N
*00

4%r2rfr(g2(r)
o

sin Kr
Kr '

so

(56)

(57)

Also this result has been derived previously for a special case12. It shows 
that in the case of short-range interaction, the sign of the correlation term 
A A is determined by the sign of the structural pair correlation function g2(r) — T 
In case of a positive correlation, like (49), A A becomes positive, cf. (52), and 
vice versa for eqs. (53) and (55).

Fig. 1. Pair Correlation for 
amorphous selenium at 
room temperature, 
measured by means of 
neutron diffraction22.
In the region 
r 2Â,gz(r) has been set 
equal to zero, while the 
function tabulated in ref. 22 
oscillates, and takes on 
negative values in certain 
intervals. (In the evaluation 
of eq. (57), however, the 
tabulated function has 
been employed).
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In a liquid or amorphous solid, the pair correlation function looks generally 
like in Fig. 1, i.e., both positive and negative values are represented. The most 
predominant effects are the repulsive interaction at small r, giving rise to a 
contribution of the type of eq. (54) or (55), and a nearest-neighbor correlation 
of the type of eq. (50) or (52). However, while in a real gas, N is so small that 
(55) is a minute correction, the high density of amorphous matter makes the 
repulsive region dominate, as is evident from the figure. For amorphous selen­
ium, integration of a measured correlation function22 yields

4%A’J dr(g2(r) — 1) = — CÂ~2 ;

with*  1.3.

* The numerical value of the constant C has been determined by straight summation of the 
tabulated values of structure factor and pair correlation in ref. 22. Both procedures lead to the same 
value C~ 1.3 within their apparent accuracy of ± 20 pct. The actual error in C may be greater: 
Because of experimental limitations on the range of ^-values covered, the pair distribution g2(r) as 
deduced in ref. 22 takes on negative values in certain intervals. This unphysical behavior has not 
been corrected for in the present evaluation of C.

Thus, the resulting correlation term in the short-range limit

is very similar in magnitude but opposite in sign to the one for the diatomic 
gas, eq. (52).

It is instructive to study the behavior of eqs. (50) and (54) in case the inter­
action is not of extreme short-range nature like (51). For analytic convenience, 
take the following model,

a(£) =o.e-ka (58)
corresponding to

^(p)=^^2+«2)-3/2 (58a)

according to eq. (38b). Here, a is an arbitrary interaction radius. When (58) 
is inserted into (50) and (54) one obtains

2tï(</2 4-4a2) (59a)
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for the diatomic gas, and

^AP2 --AW-2A' b — 2aarctg — (59b)

for the hard-sphere gas.
Eqs. (52) and (55) are limiting cases of (59a) and (59b) for small values of 

a, as expected. In the opposite limit of a >> b,d, one obtains, instead,

Nxa2 (60a)

for the molecular gas, and

ba
(60b)

for the hard-sphere gas.
One may recognize that AP2 decreases monotonically when a increases from 

zero to infinity, i.e., correlations are seemingly most pronounced in the limit of 
short-range interaction. In interpreting this result, the reader ought to keep 
in mind that it only holds to the extent that the cross section is kept constant. 
Most often, cr itself will increase approximately as cc a2.

It is also obvious that (59b) decreases more rapidly with increasing a than 
does (59a). Therefore, one may anticipate that in case of an amorphous medi­
um, the relative significance of repulsive and attractive correlations is shifted 
in the direction of increased importance of positive correlations for long-range 
interaction. Whether or not this leads to positive values of AP2 depends on the 
details of the interaction and the structure.

The results derived so far—when suitably extended to more general situa­
tions as prescribed in sect. 3 — are of immediate significance when fluctuations 
are to be determined, cf. eq. (13). Higher than pair correlations do not enter 
here. When interest ist directed toward a frequency spectrum like (26) or the 
probability density of some cumulative effect, like (31), the significance of 
higher-order correlations, dsPn for n > 3 needs to be discussed.

Let us consider the limit of short-range interaction. Insert (45a) into (45), 
and apply (51). Then,

r''(gAr ;rz)- I)d(e)d(e') (61)

where r — (x,p) and rz = (xz,pz).
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If the medium is isotropic, the correlation function ig3(r:r/) —1 is invariant 
toward rotation of the coordinate system, i.e. it can only depend on r,r', and 
\r — r'\. Therefore, the angular integrations can be carried out, and

where

. V.w • (2V)2 ^'[>3(r ;r') — 1], (62)

ä#V) = 2 [&(*v',|r-r'l) +&(*■>< r+r' )] ; (62a)

Thus, we obtain the important result that in the short-range limit, A/3 picks 
up only correlations between collinear atomic positions.

This means that in a polyatomic molecular gas, triple (and higher) cor­
relations are significant only provided that are collinear atoms. The magnitude 
of these correlations has been investigated in considerable detail in the special 
case of multiple scattering off triatomic molecules6 * * * 10. These estimates will not 
be repeated here. However, comparison of eq. (62) with eq. (57) shows that 
the ratio of APJAP2 is of higher order small in terms of (j/2nd2, in addition to 
the fact that its numerical value must be small in the absence of any correlation 
that forces three or more atoms on straight lines.

6. Selection of Statistical Variables
In the two previous sections, attention was restricted to collisions between well-localized particles, 
e.g. projectile ions and target atoms. The (more or less pronounced) deviations from Poisson sta­
tistics are in this case directly related with spatial correlations between target atoms. It is worth
noting that such spatial correlations only exist when the target atoms interact. Indeed, Poisson 
statistics does apply in case of an ideal gas, while deviations were found in case of molecular bind­
ing, the real gas, and the amorphous solid.

This is a rather general result. Indeed, it appears that at least in case of large cross sections,
correlation effects are the rule rather than the exception in particle penetration through non-

Thus, it appears that within the range of validity of the short-range ap­
proximation, i.e., so long as correlation effects are moderate, pair correlations 
are responsible for the dominant correction to Poisson statistics, and higher 
correlations can be ignored in the extended Bothe formula.

In the opposite limit of long-range interaction, such a simple picture can 
hardly be expected to be true. Indeed, collective effects, and hence higher cor­
relations tend to be important in such situations. It is, therefore, advisable to 
redefine the basic event and thus to create a description where correlations are 
moderate or even weak. Such a procedure will be sketched in the following section. 
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random media. However, one has the option of selecting generalized coordinates describing the 
initiated events in a way so correlations are minimized. Rather than trying to establish general 
criteria for a wide variety of phenomena, let us consider two simple examples that illustrate this 
point.

First, take the process of A-shell excitation by an ion beam in an amorphous solid, and ask 
for the probability Gv for v target-Ä"-shell vacancies per ion.

Consider two types of correlation. First, every target atom has two Ä'-electrons, and the respec­
tive excitation probabilities may be strongly correlated. Only in the limit of very-high-speed ions 
would it be feasible to treat this type of correlation within the short-range approximation. Second, 
consider the spatial correlation between different target atoms. Since, for ions with moderate velo­
cities (comparable with the velocities of À-- or Z-shell electrons) cross sections for Ä"-excitation can 
become appreciable on an atomic scale23, the latter class of correlation may well be sizable. It is, 
however, weak enough to be well described by the short-range approximation. A third (and often 
important23) correlation effect associated with the projectile state is outside the scope of this paper 
and therefore ignored.

From the point of view of simplicity of the general statistical description, one might initially 
attempt to describe the system in terms of one type of target particle (Ä'-electron) and one type of 
event (Ä"-excitation). Although the two Ä'-electrons are strongly correlated, such a description may 
be feasible for high-speed ions where Poisson’s law is almost fulfilled since spatial correlations are 
negligible and binding effects small. However, at moderate velocities, in the presence of both types 
of correlation, one would have to cope with correlations of both third and fourth order. Instead, 
it is more attractive to apply the (conventional) description in terms of the atom as the basic target 
particle and two types of event, /I, and ^42, representing single and double Ä"-excitation, respective­
ly. Then, eq. (31) yields

with

G _J_
'271 

dteltv-ià
0

(63)

i f Poo

(64)
° I Jo J

and

ctj + (1 — g ; (65)

Here, <q and a2 arc the cross sections for single and double excitation of the Ä-shell of an individual 
atom, and g2(r) —1 is the pair correlation characterizing the structure of the amorphous target. 
The short-range approximation has been applied to correlations between different target atoms, 
and the integration over t in (63) has been restricted to an interval size 2n, unlike in (31), in order 
to produce a probability Gr instead of a density G{v)dv.

Further evaluation of eq. (63) in case where cq and a2 are well-known parameters could be 
done by way of the procedure discussed in the subsequent section.
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Determination of the atomic parameters <jt and a2 is a problem of atomic physics that has been 
investigated in specific cases23-2“. The description of correlations in terms of impact parameters 
appears too qualitative to be applied in cases where proper quantal calculations are available, 
but may well be helpful in situations where only empirical cross sections exist. Since the present 
discussion serves to illustrate a rather specific point, this line is not followed presently.

The second example concerns the energy loss of an ion penetrating a molecular gas target. 
This problem has been treated previously as a rather simple case where correlations play a role, 
both from a particle-penetration9 and a molecular-collisions26 point of view. The present discussion 
concentrates on the question of finding the most suitable variables to minimize correlation effects 
in energy-loss straggling.

It is convenient, for that purpose, to switch to the notation used in previous work9’26. We 
consider the fluctuation in nuclear energy loss,

(AE-ÂË)2 = N'xW = N'x < d2p{T{j)i)+ T(p2Y)z > (66)

of an ion to an ideal gas of homonuclear diatomic molecules. Here, p} and pi are impact parameters 
relative to target nuclei, T(/>) is the energy transferred to an atom in an individual ion-atom col­
lision at impact parameter p (calculated from classical scattering theory), and A" the number of 
molecules per volume. W is called the straggling parameter of a molecule. It is readily seen to have 
the form

where

w/ = + (67)

W2= \d2p(T(p)y (67a)

is the straggling parameter of an individual atom, and

> (68)

a correlation term.
It has been shown9 that AW12 becomes

2nd2

in the short-range limit, i.e., for large internuclear distance d. Here,

5; = s2 = p'7Æ(/>) (69a)
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is the atomic stopping cross section. Conversely, in the long-range limit, i.e., for small d, one finds9

(70)

Eq. (69) shows that in the short-range limit, the correlation term W]2 is small, while according 
to (70), it is large in the long-range limit. In other words, the statistical variables 7] (=T (/>,)) and 
T2 are appropriate to describe the interaction in the short-range limit, but are inconvenient in the 
opposite case. In a triatomic molecule, or a dense medium, higher correlations would enter es­
sentially.

It is more attractive, for long-range interaction, to split the energy loss according to

?! + Tg = Te + Tt (71)

into an elastic and an inelastic part Te and 7), respectively, where

and P. = Ppi) and P2 = P^Pi) are momentum transfers to individual atoms. px and p2 are vectorial 
impact parameters, and M is the atomic mass.

The straggling parameter splits correspondingly into

(72)

where We and Wt represent the fluctuation in elastic and inelastic energy loss, respectively, and 
AHj, a correlation term.

In appendix A, the following expressions are derived for the three terms,

in the long-range approximation, and
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in the short-range approximation.
Thus, the correlation is weak in the long-range limit but strong in the opposite case. In other 

words, the statistical variables Te and 7) are complementary to and T2 .
As is indicated in appendix A, the evaluation hinges on the simplifying assumption of small­

angle scattering. The present results should, therefore, not be utilized uncritically in molecular-col­
lision physics. The example does, however, illustrate in a very simple way the usefulness of introducing 
“collective” modes to reduce correlation effects in the long-range approximation.

There is another, essentially independent reason to favor collective coordinates Te and 7) in 
case of long-range interaction.The use of the energy-loss functions T^p^ and 7~(/>2) in eq. (66) implies 
that the constituent atoms in the molecule act as free atoms with regard to scattering of the projectile. 
This approximation, while justified for close collisions, must in general break down for distant Col­
lisons because of the distortion of the projectile-atom interaction by valence effects. This does not 
affect the conclusion that Te and 7) are appropriate variables for collisions at large impact para­
meters, but the relation with atomic scattering parameters becomes more complex than indicated 
in eq. (71a).

7. Evaluation of Cumulative Effects

Before going into applieations, let us look at various ways of how to evaluate 
some cumulative effect U on the basis of eqs. (31) and (32), or (34).

Quite often, one will be satisfied with the average value U and the fluctu­
ation AZ72 = (U— U)2. According to (31) we have

i.e.,

Un =^dUUnG(U') 11 = 0, (75)

t/t/G(Z7)-l; (76a)

(76b) 
a

W = zfcuzaPa + ^uau0AP2 ; (76c)
\ a aß I
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These relationships could also have been derived directly from eqs. (8) and 
(13). Eq. (76b) and the first part of (76c) are the usual relations for mean value 
and fluctuation5. The rest of (76c) is not present in standard penetration theory 
for random media.

In particular, in case of short-range interaction, eqs. (57) and (76c) yield

At/2 = Nx E“X + ^E rfr(£2(r) - 1 ) (77)

for an isotropic medium.
In case of a polyatomic target, we have

(7 = ^2^,
I

p(Da >
a

(76b')

At/2

E u(i ta

according to (34), and

At/2 JVx E C(I ) E 11 (I )a°a T

. I «

(76c/)

(77')

by means of (46) and (46a) if the short-range approximation is valid. (77') 
approaches a similar form as (77) only if the medium is disordered, i.e., when 
^2aj)(r) — 1 is independent of I and J.

Extension of these relationships to vectorial quantities and to the continuum 
case is straightforward.

Consider next the case of a discrete probability distribution, as discussed 
briefly in the foregoing section. For simplicity, let ua be given by

= v ; v = 0, ± l, + 2,... (78)
so

t7=2X*

and
1 Pn

G„ dte“u-^
du Jo

(79)

or
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with

A(C) = Z(1-C’)P,-|S(1-C')(1-C'')4P2 (80)
” vu

The integration over £ goes along a closed path including the point £ = 0. Hence,

—
1 du

U!d?e C = 0
(81)

Thus, exact evaluation of the generalized Bothe formula is possible in this case. 
Eq. (81) may become useful in the analysis of ionization phenomena.
Let us return to the more general case of a probability density (31), but 

apply the diffusion approximation27, i.e., assume that the bits ua are “small”. 
Then, (32) reads

A + a ) (82)
a a oeß

up to second order in ua, and (31) yields

G(U) =—------- e (83)
1/lwD2

with U and AU2 given by (76b) and (76c). The limitations of the gaussian ap­
proximation have been discussed extensively2-5,17,27.

Finally, let us write eq. (32) in the case of short-range interaction,

Eq. (84) offers itself for a perturbation treatment810 in case of weak correlation. 
Indeed, take some representative value of t in the Bothe integral (33), such as 
the median value tm(U) defined by

dtel,u~^xaW= 2- (85)

and write (84) in the form

M S >«(i) (86)

with

<r(C = S(1 -e 'x)o- (87a)
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and

In this manner, for weak correlation, results derived on the basis of Poisson 
statistics can be modified such as to incorporate correlations.

8. Applications

Stopping of Charged Particles.
Let us consider a standard problem of the theory of particle penetration, the 
energy-loss spectrum of a charged particle after penetration of a path length x 
in a stopping medium. According to common notation1,5’28’29, the individual

according to eq. (44). The quantity S(k) can also be written in the form

S(fc)=p/?*»7(1») (90')

by means of (38a), where

event is characterized by a spectrum of energy loss Ta or, in continuum
notation, da(T), so the mean energy loss ÄE and fluctuation ß2 = (AE—ÆË)2
are given by (76b) and (76c),

ÂË = NxS ; (88)

Q2 = Wx(W+AW) ; (89)
where ~

S = ZT>a= W) ; 
a J

(88a)

W = Irrfo(7-) ;
a v

(89a)

(89b)

and
s(*) = E7X(*J(X (90)
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^(p) = E T.PM = [dTTP (p ,T) , (90a)
a J

and P(p, T)dTis the probability for energy loss (T,dT') in a collision at impact 
parameter p. By comparison of (90) with (88a), as well as (38a) with (38), it 
is evident that

S(Æ = 0)-S, (91)

and therefore, in the short-range limit,

4 w-w F*(5(fc) -11=s2 ■ 24/rfe(r) -1 * ’ (92)
where the second identity assumes the medium to be isotropic. The latter result 
has been mentioned in ref. 12.

Specifically, for a diatomic gas, insertion of (49a) into (89b) yields

AI/F = ——y dk\S(E) |2sinT<7, (93)

a result that has been derived previously by a rather different procedure9. The 
consequences of eq. (93) have been discussed in considerable detail912. It is, 
however, worthwhile to repeat that in the short-range approximation, A W 
becomes positive for the molecular gas. Experimental checks11 have confirmed 
both the sign and the magnitude of the predicted values of AW.

According to the discussion following eq. (57), the value of AW in case of 
an amorphous stopping medium is roughly equal in magnitude, but opposite 
in sign, to the one for the diatomic gas. For example, for amorphous selenium 
(cf. footnote on p.20),

S2 1.3 
2ti T ’

For the full energy-loss spectrum G (AE')d(AE'), eq. (32) yields

1 r 1G(A£)= — dte“åE-<å(t'>=--—-,
4 71J _ oo

'c + i oo

dsesAE~^-‘^
c — i co

(94)

where

^A(z) = Ax |<7tr(i) 1 ’ (27r)2 ’ „(/,*) hi/*)-ni
(95)

and
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ML*) = Z O l‘Ta)aa(k) ;a

°M = otr(t,k = 0) ;

(95a)

(95b)

The second version of eq. (94) is a generalization of Landau’s formula4 to a 
nonrandom stopping medium. In the short-range limit, for an isotropic medium, 
eq. (95) simplifies to

(96)

When (95) is evaluated in the diffusion approximation, eq. (82), (94) takes 
the form of a gaussian with the width Q2, eq. (89), centered around ÆË, eq. 
(88). Expansion up to third order in t yields an extension of Vavilov’s formula30,

M(0 = .M^+PW^-WW)} (97)

where

and
âa=3'(2^jî ;

(98)

(99)

In particular, in the short-range approximation, we have

and therefore

"oO

AQ^^ 3SIE-2JV
0

AQJQ, ~ IP
AW/W = QS’

(99')

(100)

independent of the actual correlation function. The dimensionless ratio (100) 
is of the order of ~ 1, cf. eqs. (88a), (89a), and (98). Therefore, the skewness 
correction AQJQ~ must normally be suspected to be of the same order of mag­
nitude as the straggling correction AW/W.

After insertion of (97) into (94) one obtains

G(A£) S ± cos {/(AE-Wx.S) +1Z3JVA(Q,+AQ^)} (101)
“00 



32 40:5

or, in terms of Airy functions16, the usual expression29 30 with W replaced by 
IT-f-AfF and Q by

With regard to experimental checks of correlation effects on energy loss, 
straggling measurements on amorphous solids are desirable, preferably in tar­
gets where the pair correlation or the structure factor are known with sufficient 
accuracy, so that at least one of the two integrals in eq. (92) can be evaluated. 
As was the case in molecular targets, one might first wish to trace the energy 
region where ! A PF/IT] is largest, i.e., where the stopping power has its maxi­
mum. In this region, the significant contributions to the stopping power origi­
nate from collisions at impact parameters ^aoy/z/o with v ~ for light ions,5 
where a0 and y0 are the Bohr radius and Bohr velocity. Therefore, the short- 
range approximation appears acceptable.

As a word of caution, one may add that the straggling and skewness para­
meters occurring in this discussion are to be understood strictly as defined 
through the second and third moment over an energy-loss distribution inte­
grated over all scattering angles at a well-defined penetration depth. They are 
not necessarily related in a simple manner with the half-width of an energy­
loss distribution integrated over a limited range of scattering angles. However, 
the problem of finding such a relationship0 is only loosely connected with the 
effect of correlations on straggling, and therefore not discussed in more detail 
in this context.

Multiple Scattering

The problem of small-angle multiple scattering is a two-dimensional analog of 
the problem of energy loss, except for the fact that energy loss is a one-way 
process31. For a recent summary, the reader is referred to ref. 12.

In accordance with the notation applied in ref. 12, consider a series of scat­
tering processes at small angles y, and take y as a vector in a plane perpendic­
ular to the beam. Then, the angular distribution after path length x reads, 
according to (31), 

G(ot)</2a = —
(^) J

(102)

where, by means of (32) and (44)

^A(x) = JVx|<r0(x)-j-p2A(S(fc) - l)ff(x,fc)a(M, —fc)| , (103)

and
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o-0(x) = a(x,0) ;

(104a)

(104b)

Multiple scattering is normally dominated by nuclear collisions5. Therefore, 
application of the short-range approximation appears well justified10, and

^A(x) JVx ?

The transport cross section a0(x) simplifies to

(105)

W = j^(Ç') (1 - Jo(^)) = cr0(x) (104bz)

in case of azimuthally symmetric scattering. Similarly, (102) reads

G{ol) = G(a) = y- I xdxJo[xoc)e~zA^ ; (106)
^Jo

Eq. (106) is Bothe’s formula in the standard form applying to small-angle scat­
tering. Jo is the zero-order Bessel function of the first kind.

Eq. (105) can be discussed along the same lines as eq. (96). In the partic­
ular case of a diatomic molecule, (105), (106), and (49) yield

1 f°°G(a) = xdxjr0(xa)-e •Vx<‘ToW-l(<’o(x))72w!} ; (107)
^Jo

a result that has been derived previously by a different procedure; it has also 
been evaluated explicitly, and confirmed experimentally810.

It is an interesting feature of eq. (107) that it predicts a smaller half-width 
of the multiple-scattering profile for a diatomic gas, in comparison with the 
equivalent random medium. Since, in the short-range limit, the sign of the 

*OO

correction depends on the factor 2JV dr(g2(r) —1), cf. eq. (57), it may readily be 
Jo

concluded that for an amorphous target, the multiple scattering profile is broader 
than the profile for an otherwise equivalent random medium.

However, correlation effects on the multiple-scattering half-width in mo­
lecular gases have been found to be pronounced only at extremely small target 
thicknesses which are hard to achieve experimentally in solids. Therefore, these 
effects are important only in case of very thin amorphous layers ( << lOOyf).
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Appendix A. Derivation of eqs. (73) and (74)

According to (71a) we have 

and hence

^,;= <pvr{f}2 > = I < pV( T, + T2r> + x,± x2

where

V = A < f >
and

<p2/’(/>12 + P22)(A-P2) >;

(Al)

(A2)

(A3)

(A4)

(A5)

Let us assume small-angle scattering to be dominating. Then, the momentum 
transfer is approximately perpendicular to the ion trajectory, or

= S^P(A), (A6)
Cl

and correspondingly for P2.
Intergrals are evaluated within the following scheme9 10,

< <Mpi>p2) > = p2Ap2A/'(Pi^) <dCPi-P2-fe) >>

where b is the projection of the molecular axis on a plane perpendicular to the 
ionic trajectory. Moreover,

< <5(Pi p2 -&) > ~ 2ndr + ° (a | (A?a)

for short-range interaction, and

< d(pj —p2 — fe) > ~ <^(P1 —p2)+v” V2 ^CP1 —P2)+O{^4} (A7b)u p}

for long-range interaction. After carrying out the integrations one finds
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and

(short-range)

(long-range)

(short-range)

(long-range)

(A8)

(A9)

apart from terms that are small of order d 4 or d\ respectively. After inserting 
Xx and X2 into (A2) and (A3), and applying (69) and (70), one finds (73) and (74).
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